The market pricing of accruals quality

Jennifer Francisa,*, Ryan LaFondb, Per Olssona, Katherine Schipperc

aFuqua School of Business, Duke University, Durham, NC 27708-0120, USA
bSchool of Business, University of Wisconsin, Madison, Madison, WI 53706, USA
cFinancial Accounting Standards Board, Norwalk, CT 06856-5116, USA

Received 29 October 2002; received in revised form 30 April 2004; accepted 28 June 2004
Available online 2 March 2005

Abstract

We investigate whether investors price accruals quality, our proxy for the information risk associated with earnings. Measuring accruals quality (AQ) as the standard deviation of residuals from regressions relating current accruals to cash flows, we find that poorer AQ is associated with larger costs of debt and equity. This result is consistent across several alternative specifications of the AQ metric. We also distinguish between accruals quality driven by economic fundamentals (innate AQ) versus management choices (discretionary AQ).

*\textcopyrightThis research was supported by the Fuqua School of Business, Duke University and the University of Wisconsin. The views expressed in the paper are those of the authors and do not represent positions of the Financial Accounting Standards Board. Positions of the Financial Accounting Standards Board are arrived at only after extensive due process and deliberation. We appreciate comments from Ross Watts (the editor) and Charles Wasley (the referee); from workshop participants at the Boston Area Research Colloquium, Duke, Missouri, Northwestern, Rochester, University of Southern California, the Southeast Accounting Research Conference 2002 and the Stockholm Institute for Financial Research Conference; and from Jan Barton, Sudipta Basu, George Benston, Larry Brown, Stephen Brown, Marty Butler, Qi Chen, John Graham, John Hand, Grace Pownall, Eddie Riedl, Michael Smith, Greg Waymire, Joanna Wu and Jerry Zimmerman.

*Corresponding author. Tel.: +1 919 660 7817; fax: +1 919 660 7971.

E-mail address: jfrancis@duke.edu (J. Francis).
Both components have significant cost of capital effects, but innate AQ effects are significantly larger than discretionary AQ effects.

© 2005 Elsevier B.V. All rights reserved.

JEL classification: D80; G12; G14; M41; M43

Keywords: Capital markets; Accruals quality; Information risk

1. Introduction

This study investigates the relation between accruals quality and the costs of debt and equity capital for a large sample of firms over the period 1970–2001. Our study is motivated by recent theoretical research that shows that information risk is a non-diversifiable risk factor (e.g., Easley and O’Hara, 2004; O’Hara, 2003; Leuz and Verrecchia, 2004). By information risk, we mean the likelihood that firm-specific information that is pertinent to investor pricing decisions is of poor quality. We assume that cash flow is the primitive element that investors price and identify accruals quality as the measure of information risk associated with a key accounting number—earnings. That is, accruals quality tells investors about the mapping of accounting earnings into cash flows. Relatively poor accruals quality weakens this mapping and, therefore, increases information risk.

Our paper makes two contributions. First, consistent with theories that demonstrate a role for information risk in asset pricing, we show that firms with poor accruals quality have higher costs of capital than do firms with good accruals quality. This result is consistent with the view that information risk (as proxied by accruals quality) is a priced risk factor. Second, we attempt to disentangle whether the components of accruals quality—accruals that reflect economic fundamentals (innate factors) and accruals that represent managerial choices (discretionary factors)—have different cost of capital effects. While theory does not distinguish among the sources of information risk, prior research on discretionary accruals (e.g., Guay et al., 1996; Subramanyam, 1996) provides a framework in which discretionary accruals quality and innate accruals quality will have distinct cost of capital effects. Briefly, this body of work suggests that, in broad samples, discretionary accrual choices are likely to reflect both opportunism (which exacerbates information risk) and performance measurement (which mitigates information risk); these conflicting effects will yield average cost of capital effects for discretionary accruals quality that are likely lower than the cost of capital effects for innate accruals quality. Consistent with this view, we find that innate accruals quality has larger cost of capital effects than does discretionary accruals quality.

The accruals quality (AQ) metric we use is based on Dechow and Dichev’s (2002) model which posits a relation between current period working capital accruals and operating cash flows in the prior, current and future periods. Following McNichols (2002) discussion of this model, we also include the change in revenues and property, plant and equipment (PPE) as additional explanatory variables. In this framework,
working capital accruals reflect managerial estimates of cash flows, and the extent to which those accruals do not map into cash flows, changes in revenues and PPE—due to intentional and unintentional estimation errors—is an inverse measure of accruals quality.

Our tests examine the relation between AQ and the costs of debt and equity capital. We find that firms with poorer AQ have higher ratios of interest expense to interest-bearing debt and lower debt ratings than firms with better AQ (all differences significant at the 0.001 level). Controlling for other variables known to affect debt costs (leverage, firm size, return on assets, interest coverage, and earnings volatility), the results suggest that firms with the best AQ enjoy a 126 basis point (bp) lower cost of debt relative to firms with the worst AQ. In terms of the cost of equity, tests focusing on earnings–price ratios show that firms with lower AQ have significantly (at the 0.001 level) larger earnings–price ratios relative to their industry peers; i.e., a dollar of earnings commands a lower-price multiple when the quality of the accruals component of those earnings is low. More direct tests show that CAPM betas increase monotonically across AQ quintiles, with a difference in betas between the lowest and highest quintiles of 0.35 (significantly different from zero at the 0.001 level). Assuming a 6% market risk premium, this difference implies a 210 bp higher cost of equity for firms with the worst AQ relative to firms with the best AQ. In asset-pricing regressions which include market returns and an accruals quality factor (AQ_{factor}), we find that not only is there a significant (at the 0.001 level) positive loading on AQ_{factor}, but also the coefficient on the market risk premium (i.e., the estimated beta) decreases in magnitude by nearly 20%. Extending this analysis to the three-factor asset-pricing regression, we find that AQ_{factor} adds significantly to size and book to market (as well as the market risk premium) in explaining variation in expected returns. In these regressions, the largest change in coefficient estimates (relative to the model which excludes AQ_{factor}) is noted for the size factor where the average loading declines by about 30% when AQ_{factor} is included. We conclude that accruals quality not only influences the loadings on documented risk factors, but contributes significant incremental explanatory power over and above these factors.

We extend these analyses by investigating whether the pricing of accruals quality differs depending on whether the source of accruals quality is innate, i.e., driven by the firm’s business model and operating environment, or discretionary, i.e., subject to management interventions. Following Dechow and Dichev, we identify several summary indicators of the firm’s operating environment or business model: firm size, standard deviation of cash flows, standard deviation of revenues, length of operating cycle, and frequency of negative earnings realizations. Our first analysis uses the fitted values from annual regressions of AQ on these summary indicators as the measure of the innate portion of accrual quality; the residual is used as the measure of discretionary accruals quality. Our second analysis of innate versus discretionary components includes these summary indicators as additional control variables in the cost of capital tests. Controlling for these variables allows us to interpret the coefficient on (total) AQ as capturing the pricing effects associated with the discretionary piece of accruals quality—i.e., the piece that is incremental to the innate factors. Regardless of the approach used to isolate the components of AQ, we
find that the cost of capital effect of a unit of discretionary AQ is smaller both in magnitude and statistical significance than the cost of capital effect of a unit of innate AQ.

Overall, we interpret our results as documenting cost of capital effects that are consistent with a rational asset-pricing framework in which accruals quality captures an information risk factor that cannot be diversified away. The findings concerning innate and discretionary accruals quality are consistent with information risk having larger pricing effects when it is driven by firm-specific operating and environmental characteristics than when it is associated with discretionary decisions.

We believe these results have implications for assessments of reporting quality. First, we provide systematic evidence that reporting quality as captured by accruals quality is salient for investors; i.e., we provide evidence that reporting quality matters. Second, our results contradict an implicit assumption in some policy-oriented discussions (e.g., Levitt, 1998) that reporting quality is largely determined by management’s short-term reporting choices; our results suggest that in broad samples, over long periods, reporting quality is substantially more affected by management’s long-term strategic decisions that affect intrinsic factors. For those who believe that financial reporting should reflect economic conditions more than management implementation decisions, this result suggests that accrual accounting is performing as intended. Third, research which has assessed the relative importance of reporting standards versus implementation decisions using a cross-jurisdictional design (e.g., Ball et al., 2003) has concluded that the reporting standards are less important than the incentives which drive implementation decisions in determining differences in earnings quality across jurisdictions. Our results suggest that this analysis should be further conditioned on innate factors that capture jurisdiction-specific features of business models and operating environments.

In addition to research pertaining to the pricing of information risk, our results relate to other streams of accounting research. The first stream investigates the capital market effects of financial reporting, as documented by adverse capital market consequences (in the form of shareholder losses) when earnings are of such low quality as to attract regulatory or legal attention. For example, previous research has documented severe economic consequences for earnings of sufficiently low quality as to attract SEC enforcement actions (Feroz et al., 1991; Dechow et al., 1996; Beneish, 1999), shareholder lawsuits (Kellogg, 1984; Francis et al., 1994), or restatements (Palmrose et al., 2004). The financial press also provides ample anecdotal evidence of catastrophic shareholder losses associated with the (arguably) lowest quality accruals, those resulting from financial fraud. However, research on severely low earnings quality firms does not establish a general relation between reporting quality and capital market consequences. Our results show that the quality of one component of earnings—accruals—has economically meaningful consequences for broad samples of firms, unconditional on external indicators of extremely poor quality.

A second stream of related research explores a different, and explicitly anomalous, form of capital market effects of accruals. By anomalous effects we mean systematic
patterns in average returns not explained by the CAPM (Fama and French, 1996). Specifically, this research shows that firms with relatively (high) low magnitudes of signed accruals, or signed abnormal accruals, earn (negative) positive risk-adjusted returns (e.g., Sloan, 1996; Xie, 2001; Chan et al., 2001). While both anomaly research and our investigation are concerned with the relation between accruals-based measures and returns, the perspectives differ. Whereas anomaly research views the abnormal returns associated with observable firm attributes as arising from slow or biased investor responses to information, we view observable firm characteristics as proxies for underlying, priced risk factors. Consistent with this view, our tests are based on unsigned measures. That is, we predict that larger magnitudes of AQ are associated with larger required returns because a larger magnitude of AQ indicates greater information risk, for which investors require compensation in the form of larger expected returns. In contrast, anomaly research rests on signed accruals measures; this research predicts positive returns to firms with the largest negative accruals and negative returns to firms with the largest positive accruals. While the anomaly research perspective and our perspective imply the same predictions about large negative accruals, the perspectives imply the opposite predictions for large positive accruals. Consistent with this argument, we find that while the profitability of the accruals trading strategy is marginally reduced by the inclusion of accruals quality as a control (risk) factor, the abnormal returns remain reliably positive. We conclude that the accruals quality pricing effects that we document are distinct from the accruals anomaly.

A third stream of related research assesses the relation between costs of capital and measures of either the quantity of information communicated to investors, or some mixture of quality/quantity attributes of that information. For example, Botosan (1997) finds evidence of higher costs of equity for firms with low analyst following and relatively low disclosure scores, where the scores capture information quantity. Research has also found a relation between both the cost of equity (Botosan and Plumlee, 2002) and the cost of debt (Sengupta, 1998) and analyst-based (AIMR) evaluations of aggregate disclosure efforts, where the evaluations take into account annual and quarterly reports, proxy statements, other published information and direct communications to analysts. Our analysis adds to this work by providing evidence on the link between the costs of debt and equity capital and measures of the quality of accruals information.

Finally, while our perspective on the relation between accruals quality and costs of capital is that accruals quality—whether innate or discretionary—has the potential to influence costs of capital, recent related work by Cohen (2003) explores whether exogenous variables explain both reporting quality and its economic consequences. Cohen first estimates the probability that reporting quality for a given firm is above the industry median and then tests for an association between this binary indicator of reporting quality and proxies for economic consequences. He finds reporting quality is associated with bid-ask spreads and analyst forecast dispersion, but not with his implied estimates of the cost of equity capital. While both Cohen’s and our studies are complementary in identifying firm-specific variables that are intended to capture intrinsic influences on reporting outcomes, they differ considerably in terms
of sample period, data, variable selection and measurement, and research design, so results are not comparable.\(^1\)

In the next section, we develop hypotheses and describe the proxy for accruals quality used to test these hypotheses. Section 3 describes the sample and provides descriptive information on the test and control variables. Section 4 reports tests of whether (total) accruals quality is related to the cost of capital and Section 5 extends these tests by examining whether the innate and discretionary components of accruals quality are separately and differentially priced. Section 6 reports the results of robustness checks and additional tests. Section 7 concludes.

2. Hypotheses and accruals quality metrics

2.1. Theories of the pricing of information risk

Our paper builds on theoretical research investigating how the supply of information affects the cost of capital. Easley and O’Hara (2004) develop a multi-asset rational expectations model in which the private versus public composition of information affects required returns and thus the cost of capital. In their model, relatively more private information increases uninformed investors’ risk of holding the stock, because the privately informed investors are better able to shift their portfolio weights to take advantage of new information. Uninformed investors thus face a form of systematic (i.e., undiversifiable) information risk, and will require higher returns (charge a higher cost of capital) as compensation. Required returns are affected both by the amount of private information (with more private information increasing required returns) and by the precision of public and private information (with greater precision of either reducing required returns). Easley and O’Hara explicitly note an important role for precise accounting information in reducing the cost of capital by decreasing the (information-based) systematic risk of shares to uninformed investors.

Taking a different approach, Leuz and Verrecchia (2004) consider the role of performance reports (e.g., earnings) in aligning firms and investors with respect to capital investments. Poor-quality reporting impairs the coordination between firms and their investors with respect to the firm’s capital investment decisions, and thereby creates information risk. Anticipating this, investors demand a higher risk premium; i.e., they charge a higher cost of capital. Leuz and Verrecchia show that even in an economy with many firms and a systematic component to the payoff, a portion of this information risk is non-diversifiable.

\(^1\)For example, Cohen’s sample period is 1987–2001 and ours is 1970–2001; we focus on several measures of the cost of equity capital and the cost of debt capital, and Cohen is concerned with other outcomes such as analyst following and bid-ask spread; we use several cost of equity and debt proxies to test the robustness of our results; we use a continuous measure of quality (i.e., \(AQ\)), and Cohen uses a binary indicator variable; Cohen identifies nine exogenous variables, of which two (firm size and operating cycle) are also included in the Dechow–Dichev set of innate determinants of accruals quality that we use. (The other seven variables are number of shareholders, growth in sales, capital intensity, market share, leverage, gross margin percentage, and number of business segments, all industry-adjusted.)
In short, both Easley and O’Hara and Leuz and Verrecchia predict that firms with more information risk will have higher costs of capital. In both models, information risk concerns the uncertainty or imprecision of information used or desired by investors to price securities. We assume that investors value securities based on their assessments of future cash flows; therefore, we seek a measure that captures the information uncertainty in cash flows. We focus on a measure related to the accrual component of earnings for two reasons. First, information about cash flows is supplied by earnings; i.e., cash flow equals earnings less accruals, and prior research (e.g., Dechow, 1994) shows that current earnings is, on average, a good indicator of future cash flow. However, the accrual component of earnings is subject to greater uncertainty than is the cash flow component, because accruals are the product of judgments, estimates, and allocations (of cash flow events in other periods), while the cash flow component of income is realized. Second, we believe accruals quality is a more primitive construct for information risk concerning cash flows than are other earnings attributes. Other studies that investigate alternative (to accruals quality) earnings attributes include: Francis et al. (2004), who calibrate the pricing effects of accruals quality, persistence, predictability, smoothness, value relevance, timeliness and conservatism; Barth and Landsman (2003), who examine the relation between the value relevance of earnings and the weighted average cost of capital; Barone (2003), who examines measures based on Lev and Thiagarajan’s (1993) fundamental scores and a measure based on relations between financial statement line items; and Bhattacharya et al. (2003) who examine the association between country-level measures of the average cost of equity and earnings opacity (where opacity is a combination of earnings aggressiveness, loss avoidance, and earnings smoothing behavior, measured at the country level).

Using accruals quality as the proxy for information risk, we formalize the prediction that costs of capital are increasing in information risk; stated in null form, our first hypothesis is

H1. There is no difference in the costs of capital of firms with poor accruals quality and firms with good accruals quality.

We test this hypothesis against the alternative that firms with poor accruals quality have higher costs of capital than firms with good accruals quality.²

2.2. Measuring accruals quality

We believe that uncertainty in accruals is best captured by the measure of accruals quality developed by Dechow and Dichev (2002) (hereafter DD). In the DD model, accruals quality is measured by the extent to which working capital accruals map

²Easley et al. (2002) find results that are broadly consistent with the prediction that firms with more private information (as measured by PIN scores, a market microstructure measure of informed trading) and less public information have larger expected returns. Our analysis complements their research by considering a second implication of Easley and O’Hara’s model, namely, that more precise (higher quality) accounting information reduces the cost of capital.
into operating cash flow realizations. This model is predicated on the idea that, regardless of management intent, accruals quality is affected by the measurement error in accruals. Intentional estimation error arises from incentives to manage earnings, and unintentional error arises from management lapses and environmental uncertainty; however, the source of the error is irrelevant in this approach. DD’s approach regresses working capital accruals on cash from operations in the current period, prior period and future period. The unexplained portion of the variation in working capital accruals is an inverse measure of accruals quality (a greater unexplained portion implies poorer quality).

As a practical matter, the DD approach is limited to current accruals. While applying the DD model to total accruals would, in principle, produce an accruals quality metric that comprehensively measures accruals uncertainty, the long lags between non-current accruals and cash flow realizations effectively preclude this extension. To address this limitation, we also consider proxies for accruals quality that are based on the absolute value of abnormal accruals, where abnormal accruals are estimated using the Jones (1991) model, as modified by Dechow et al. (1995). Applying the modified Jones approach to our setting, accruals quality is related to the extent to which accruals are well captured by fitted values obtained by regressing total accruals on changes in revenues and PPE. Because abnormal accruals consider both current and non-current accruals they do not suffer from the limitation of the DD model. However, the modified Jones’ model’s identification of ‘abnormal’ accruals has been subject to much criticism (see, e.g., Guay et al., 1996; Bernard and Skinner, 1996). Furthermore, the modified Jones model identifies accruals as abnormal if they are not explained by a limited set of fundamentals (PPE and changes in revenues), and while we believe that such abnormal accruals contain a substantial amount of uncertainty, the link to information risk is less direct than in the DD approach.

For these reasons, we use the DD approach to estimate a proxy for accruals quality. (As described in Section 6.1, we also examine the sensitivity of our results to other AQ measures.) Specifically, our AQ metric is based on the cross-sectional DD model, augmented with the fundamental variables from the modified Jones model, namely, PPE and change in revenues (all variables are scaled by average assets):

\[
TCA_{j,t} = \phi_{0,j} + \phi_{1,j} CFO_{j,t-1} + \phi_{2,j} CFO_{j,t} + \phi_{3,j} CFO_{j,t+1} + \phi_{4,j} \Delta Rev_{j,t} \\
+ \phi_{5,j} PPE_{j,t} + v_{j,t},
\]

(1)

where \(TCA_{j,t} = \Delta CA_{j,t} - \Delta CL_{j,t} - \Delta Cash_{j,t} + \Delta STDEBT_{j,t} = \) total current accruals in year \(t\), \(CFO_{j,t} = NIBE_{j,t} - TA_{j,t}\) = firm \(j\)’s cash flow from operations in year \(t\), \(NIBE_{j,t}\) = firm \(j\)’s net income before extraordinary items (Compustat #18) in year \(t\),

\(\text{ARTICLE IN PRESS}\)

\(^{3}\)We calculate total accruals using information from the balance sheet and income statement (indirect approach). We use the indirect approach rather than the statement of cash flows (or direct method, advocated by Hribar and Collins, 2002) because statement of cash flow data are not available prior to 1988 (the effective year of SFAS No. 95) and our AQ metric requires seven yearly observations. We draw similar inferences (not reported) if we restrict our sample to post-1987 and use data from the statement of cash flows.
\[TA_{j,t} = (\Delta CA_{j,t} - \Delta CL_{j,t} - \Delta Cash_{j,t} + \Delta STDEBT_{j,t} - DEPN_{j,t}) = \text{firm } j\text{'s total accruals in year } t, \Delta CA_{j,t} = \text{firm } j\text{'s change in current assets (Compustat #4) between year } t - 1 \text{ and year } t, \Delta CL_{j,t} = \text{firm } j\text{'s change in current liabilities (Compustat #5) between year } t - 1 \text{ and year } t, \Delta Cash_{j,t} = \text{firm } j\text{'s change in cash (Compustat #1) between year } t - 1 \text{ and year } t, \Delta STDEBT_{j,t} = \text{firm } j\text{'s change in debt in current liabilities (Compustat #34) between year } t - 1 \text{ and year } t, DEPN_{j,t} = \text{firm } j\text{'s depreciation and amortization expense (Compustat #14) in year } t, \Delta Rev_{j,t} = \text{firm } j\text{'s change in revenues (Compustat #12) between year } t - 1 \text{ and year } t, PPE_{j,t} = \text{firm } j\text{'s gross value of PPE (Compustat #7) in year } t. \]

McNichols (2002) proposes this combined model, arguing that the change in sales revenue and PPE are important in forming expectations about current accruals, over and above the effects of operating cash flows. She shows that adding these variables to the cross-sectional DD regression significantly increases its explanatory power, thus reducing measurement error. Our intent in using this modified DD model is to obtain a better-specified expectations model which, in turn, should lead to a better-specified stream of residuals. For our sample, the addition of change in revenues and PPE increases explanatory power from a mean of 39% to a mean of 50%.

We estimate Eq. (1) for each of Fama and French’s (1997) 48 industry groups with at least 20 firms in year \(t \). Consistent with the prior literature, we winsorize the extreme values of the distribution to the 1 and 99 percentiles. Annual cross-sectional estimations of (1) yield firm- and year-specific residuals, which form the basis for our accruals quality metric: \(AQ_{j,t} = \sigma(v_{j,t}) \), is the standard deviation of firm \(j \)'s residuals, \(v_{j,t} \), calculated over years \(t - 4 \) through \(t \). Larger standard deviations of residuals indicate poorer accruals quality. However, if a firm has consistently large residuals, so that the standard deviation of those residuals is small, that firm has relatively good accruals quality because there is little uncertainty about its accruals. For such a firm, the accruals map poorly into cash flows, but this is a predictable phenomenon, and should not be a reason for priced uncertainty.

2.3. Distinguishing between the cost of capital effects of innate and discretionary accruals quality

2.3.1. Hypothesis development

The theoretical models summarized in Section 2.1 establish a pricing role for information risk, but do not distinguish among possible sources of this risk. That is, these models do not predict differences between the pricing effects of poor accruals quality that is driven by innate features of the firm’s business model and operating environment, and poor accruals quality that is discretionary, i.e., due to accounting choices, implementation decisions, and managerial error. However, insights from research on earnings management suggest a potential distinction between the pricing effects of the innate and discretionary components of accruals quality. Guay et al.’s (1996) discussion of the exercise of managerial discretion over accruals suggests that the discretionary component of accruals quality contains up to three distinct subcomponents. The performance subcomponent, which reflects management’s attempts to enhance the ability of earnings to reflect performance in a reliable and
timely way, would be expected to reduce information risk. The second and third subcomponents, which reflect opportunism and pure noise, respectively, would be expected to increase information risk, although it is not clear that they would have the same magnitude of effect as would innate accruals quality.

While Guay et al.’s arguments suggest that the performance and opportunism subcomponents dominate the noise component (i.e., the discretionary component of accruals is not mostly noise), their empirical results do not clearly point to either the performance effect or the opportunistic effect as being empirically stronger for the sample they consider. However, their discussion of results, combined with Healy’s (1996) discussion of their paper, provides insights that are pertinent for our purposes. First, Guay et al., p. 104, conclude that “given that managerial discretion over accruals has survived for centuries, our prior is that the net effect of discretionary accruals in the population is to enhance earnings as a performance indicator.” Under this view, the discretionary component of accruals quality reduces information risk, and thereby offsets the increased cost of capital associated with low innate accruals quality.

However, Guay et al. also note, as does Healy, that broad samples covering long time periods will contain both accruals that conform to the performance hypothesis and accruals that are driven by managerial opportunism. Specifically, Healy notes that in a cross-section of firms, management of one firm can report opportunistically and management of another can report unbiasedly (with both behaviors potentially shifting over time), with the result that the overall observed effect, for a given sample, will be a weighted average of the separate effects. That is, while performance effects might be expected to dominate when management does not face incentives to engage in opportunistic behaviors, previous research provides evidence that opportunistic effects dominate in carefully selected, non-random samples where incentives for opportunistic behaviors are strong. Our sample, which is selected to enhance the generalizability of our results, likely contains observations that are associated with both effects. We do not attempt to separate these effects because testing for opportunistic behaviors affecting discretionary accruals quality would require the use of targeted, idiosyncratic samples chosen to enhance the effects of specific incentives to behave opportunistically.

Placing these results and discussion in the context of our research question, we draw the following inferences. First, while theories of information risk do not imply differences in the cost of capital effects of innate versus discretionary accruals quality, research on earnings management and discretionary accruals suggests the possibility of such differences. Second, managers’ attempts to use discretion over accruals to improve earnings as a performance indicator will reduce the information asymmetry that gives rise to undiversifiable information risk, and therefore reduce
the information risk premium demanded by investors. However, broad samples covering long time periods will also contain observations where managerial discretion is used to reap opportunistic gains; such behaviors are expected to increase information uncertainty and, therefore, increase the risk premium demanded by investors. This reasoning implies that discretionary accruals quality is expected to have cost of capital effects that reflect some mixture of performance improvement (which will offset the cost of capital increases associated with innate accruals quality factors) and opportunism plus noise (which will exacerbate these factors). To the extent that discretionary accruals quality reflects a mixture of information-risk-increasing and information-risk-decreasing effects, we expect its overall cost of capital effect to be smaller than the effect for innate accruals quality.

Our second hypothesis formalizes the prediction of differential cost of capital effects between innate and discretionary components of accruals quality; we state H2 in its null form (which implies that investors are indifferent to the specific causes of information risk) and test it against the alternative form (which implies that investors value a unit of discretionary accruals quality less than they value a unit of innate accruals quality):

H2. There is no difference in the cost of capital effects of the innate component of accruals quality versus the discretionary component of accruals quality.

2.3.2. Empirical distinctions between innate and discretionary accruals quality

We use two approaches to disentangle the costs of capital effects of the discretionary and innate components of accruals quality. Both methods use summary indicators to capture the influence of operating environment and business model on accruals quality. We refer to these effects as ‘innate factors,’ recognizing that this description is imprecise because management can change the business model (e.g., by increasing receivables turnover) or the operating environment (e.g., by exiting a line of business or a geographic region). We view innate factors as being slow to change, relative to factors (such as management’s accounting implementation decisions) that affect discretionary accruals quality. We use the factors suggested by DD as affecting (innate) accruals quality: firm size, standard deviation of cash flow from operations, standard deviation of sales revenues, length of operating cycle and incidence of negative earnings realizations.

The first approach (Method 1) explicitly separates the innate and discretionary components of accruals quality using annual regressions of AQ on the innate factors. The predicted value from each regression yields an estimate of the innate portion of firm j’s accrual quality in year t, $InnateAQ_{jt}$. The prediction error is the estimate of the discretionary component of the firm’s accruals quality in year t, $DiscAQ_{jt}$. Method 1 replaces the (total) AQ variable in the original regressions with $InnateAQ$ and $DiscAQ$. The second approach (Method 2) controls for innate factors affecting accruals quality by including them as independent variables in the costs of capital tests. In these augmented regressions, the coefficient on AQ captures the cost of capital effect of the portion of accruals quality that is incremental to the effect captured by the innate factors. We interpret this coefficient as a measure of the cost of capital effect of discretionary accruals quality.
The two approaches to distinguishing between innate and discretionary accruals quality differ in several ways that have implications for drawing inferences about H2. One difference arises because Method 2 does not produce a separate measure of innate accruals quality. Therefore, under the Method 2 approach, inferences about H2, which (in its null form) predicts no differences in the costs of capital effects of innate versus discretionary accruals quality, must be based on comparisons between the total accruals quality cost of capital effect and the discretionary component’s effect. In contrast, Method 1 allows us to make direct comparisons of the effects of innate versus discretionary accruals quality. A second difference stems from the relative sensitivity of the two methods to the effects of potentially omitted innate variables, Z. Under Method 1, omitted innate factors lead to model misspecification, which manifests itself as noise in the error term. All else equal, noisier values of the error terms increase the measurement error in DiscAQ, leading to a downward bias (toward zero) on the estimates of the pricing effect of discretionary accruals quality. Under Method 2, the exclusion of Z likely results in larger coefficient estimates on AQ than would occur if Z is included as an independent variable (assuming that Z is positively associated with innate AQ). In short, to the extent that our set of innate factors is incomplete, the estimated pricing effects of discretionary accruals quality are likely biased downward under Method 1 and upward under Method 2. Comparing results based on the two methods bounds the cost of capital effects of the discretionary component of accruals quality, conditional on the identification of the set of innate factors.

3. Sample and description of accruals quality proxies

We calculate values of \(AQ_{jt} = \sigma(v_j)_t \) for all firms with available data for the 32-year period \(t = 1970 - 2001 \). To be included in any of the market-based tests, we require that each firm-year observation has data on AQ and the necessary market measures. Because \(\sigma(v_j)_t \) is based on five annual residuals, our sample is restricted to firms with at least 7 years of data (recall that Eq. (1) includes both lead and lag cash flows). This restriction likely biases our sample to surviving firms which tend to be larger and more successful than the population. We expect this restriction will, if anything, reduce the variation in AQ, making it more difficult to detect effects. In total, there are 91,280 firm-year observations with data on AQ. The number of firms each year ranges from about 1,500 per year in the early 1970s to roughly 3,500 per year towards the end of the sample period. Table 1 reports summary statistics on AQ for the pooled sample. Mean and median values of AQ are 0.0442 and 0.0313, respectively; 80% of the values are in the range 0.0107–0.0943. In unreported tests, we also examine the over-time variation in AQ, as captured by the cross-sectional distribution of firm j’s rolling 5-year standard deviation of \(\sigma(v_j)_t \). (We exclude firm-year observations with incomplete 5-year data). These data indicate considerable over-time variability, as evidenced by an average standard deviation of 0.0119, or 27% of the mean value of \(\sigma(v_j)_t = 0.0442 \).
Table 1 also reports summary information on selected financial variables. The sample firms are large (median market value of equity is about $64 million and median assets are about $102 million); profitable (median return on assets is about 0.042); and growing (median sales growth is 0.126). In unreported tests, we compare these sample attributes to those of the Compustat population for the same time period. Consistent with the selection bias noted above, our sample firms are larger, more profitable and experience higher growth than the typical Compustat firm (the median Compustat firm over our sample period has a market value of equity of $59 million, ROA of 0.034, and sales growth of 0.100). We note that while the differences between our sample and the Compustat population are

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ:</td>
<td>0.0442</td>
<td>0.0107</td>
<td>0.0179</td>
<td>0.0313</td>
<td>0.0558</td>
<td>0.0943</td>
</tr>
<tr>
<td>Financial variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market value of equity ($mils)</td>
<td>1206.6</td>
<td>4.7</td>
<td>14.3</td>
<td>64.2</td>
<td>374.8</td>
<td>1702.1</td>
</tr>
<tr>
<td>Assets ($mils)</td>
<td>1283.5</td>
<td>8.5</td>
<td>25.6</td>
<td>102.0</td>
<td>511.3</td>
<td>2333.6</td>
</tr>
<tr>
<td>Sales ($mils)</td>
<td>1240.1</td>
<td>8.9</td>
<td>30.7</td>
<td>127.6</td>
<td>575.2</td>
<td>2297.8</td>
</tr>
<tr>
<td>ROA</td>
<td>0.003</td>
<td>−0.101</td>
<td>0.005</td>
<td>0.042</td>
<td>0.076</td>
<td>0.114</td>
</tr>
<tr>
<td>Market to book ratio</td>
<td>2.02</td>
<td>0.44</td>
<td>0.77</td>
<td>1.32</td>
<td>2.29</td>
<td>4.07</td>
</tr>
<tr>
<td>CostDebt</td>
<td>0.099</td>
<td>0.059</td>
<td>0.074</td>
<td>0.092</td>
<td>0.114</td>
<td>0.144</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.276</td>
<td>0.010</td>
<td>0.109</td>
<td>0.248</td>
<td>0.381</td>
<td>0.520</td>
</tr>
<tr>
<td>σ (NIBE)</td>
<td>0.065</td>
<td>0.011</td>
<td>0.020</td>
<td>0.038</td>
<td>0.077</td>
<td>0.151</td>
</tr>
<tr>
<td>Earnings–price ratio</td>
<td>0.089</td>
<td>0.026</td>
<td>0.047</td>
<td>0.073</td>
<td>0.114</td>
<td>0.166</td>
</tr>
<tr>
<td>IndEP</td>
<td>0.008</td>
<td>−0.045</td>
<td>−0.022</td>
<td>0.001</td>
<td>0.027</td>
<td>0.062</td>
</tr>
<tr>
<td>Sales growth</td>
<td>0.193</td>
<td>0.018</td>
<td>0.067</td>
<td>0.126</td>
<td>0.220</td>
<td>0.403</td>
</tr>
<tr>
<td>Growth (in book value of equity)</td>
<td>1.056</td>
<td>0.657</td>
<td>0.805</td>
<td>0.961</td>
<td>1.198</td>
<td>1.586</td>
</tr>
</tbody>
</table>

Innate factors explaining accruals quality

σ(CFO)	0.094	0.029	0.045	0.073	0.118	0.181
σ(Sales)	0.257	0.068	0.118	0.199	0.326	0.507
OperCycle	182	48	78	123	180	251
log(OperCycle)	4.707	3.866	4.362	4.810	5.191	5.527
NegEarn	0.193	0.000	0.000	0.100	0.300	0.600

Sample description and variable definitions: The sample contains 91,280 firm-year observations over $t = 1970–2001$ with Compustat data to calculate AQ in any year. $AQ = \text{standard deviation of firm } j\text{'s residuals, from years } t-4\text{ to } t\text{ from annual cross-sectional estimations of the modified Dechow–Dichev (2002) model. ROA} = \text{return on assets; CostDebt} = \text{interest expense in year } t+1\text{ divided by average interest bearing debt in years } t\text{ and } t+1; \text{Leverage} = \text{total interest bearing debt to total assets; }\sigma(NIBE) = \text{standard deviation of firm } j\text{'s net income before extraordinary items; IndEP} = \text{industry-adjusted EP ratio, equal to firm } j\text{'s earnings–price ratio less the median earnings–price ratio of its industry; sales growth = year-to-year percentage change in sales; Growth = log of 1 plus the percentage change in the book value of equity; }\sigma(CFO) = \text{standard deviation of cash flow from operations; }\sigma(Sales) = \text{standard deviation of sales; OperCycle = firm } j\text{'s operating cycle; NegEarn = incidence of negative earnings over the past 10 years.}$

Table 1 also reports summary information on selected financial variables. The sample firms are large (median market value of equity is about $64 million and median assets are about $102 million); profitable (median return on assets is about 0.042); and growing (median sales growth is 0.126). In unreported tests, we compare these sample attributes to those of the Compustat population for the same time period. Consistent with the selection bias noted above, our sample firms are larger, more profitable and experience higher growth than the typical Compustat firm (the median Compustat firm over our sample period has a market value of equity of $59 million, ROA of 0.034, and sales growth of 0.100). We note that while the differences between our sample and the Compustat population are
statistically significant (tests not reported), they are relatively small in economic terms.

4. Accruals quality and the costs of debt and equity capital

Our first set of tests examines the association between accruals quality and proxies for costs of capital: cost of debt (Section 4.1) and cost of equity, as captured by industry-adjusted earnings–price ratios (Section 4.2) and factor loadings in conventional one-factor and three-factor asset-pricing models (Section 4.3). For each test, we merge the sample described in Section 3 with all observations with the market and accounting data dictated by that test. Of the 91,280 firm-year observations with data on \(AQ \), 76,195 have data on interest expense as a percent of interest-bearing debt (our proxy for the cost of debt) and 55,092 have the necessary data to calculate earnings–price ratios. The samples used in the asset-pricing tests include 8,881 firms with data on \(AQ \) and monthly returns data, and 20,878 firms with monthly returns data, respectively.

Our analyses are based on annual regressions estimated using the decile ranks of \(AQ \), for the period \(t = 1970–2001 \). The use of decile ranks controls for outliers and non-linearities, and facilitates interpretation of the economic magnitudes of the cost of capital effects. To control for cross-sectional correlations, we assess the significance of the 32 annual regression results using the time-series standard errors (Fama-MacBeth, 1973).

4.1. Cost of debt

Our first test examines whether \(AQ \) explains variation in the realized cost of debt (\(\text{CostDebt} \)), calculated as the ratio of firm \(j \)’s interest expense in year \(t+1 \) (Compustat #15) to average interest-bearing debt outstanding during years \(t \) and \(t+1 \) (Compustat #9 and #34). Summary information reported in Table 1 shows a mean (median) cost of debt of 9.9% (9.2%), with 80% of the sample having a cost of debt between 5.9% and 14.4%.

Evidence on the relation between \(\text{CostDebt} \) and accruals quality is detailed in Panel A of Table 2, where we report the mean cost of debt for each quintile of the ranked \(AQ \) distribution. These data show that the worst accruals quality firms (Q5) have mean cost of debt of 10.77% while the best accruals quality firms (Q1) have mean cost of debt of 8.98%. The increase in \(\text{CostDebt} \) across the quintiles is monotonic, with a significant (at the 0.001 level) difference between the mean \(\text{CostDebt} \) for the worst and best \(AQ \) quintile (Q5 versus Q1). These differences are economically meaningful: the differential cost of debt between Q5 and Q1 corresponds to 179 bp (t-statistic = 10.10).

These effects may be overstated because the tests do not control for the effects of other factors known to affect the cost of debt: financial leverage, firm size, return on assets, interest coverage, and earnings volatility (Kaplan and Urwitz, 1979; Palepu et al., 2000). If accruals quality is not subsumed by one or more of these factors, and
Table 2
Tests of the association between accruals quality and proxies for the costs of debt and equity capital, 1970–2001

<p>| Panel A: Mean values of cost of debt, industry-adjusted EP ratios, and beta by AQ quintiles<sup>a</sup> |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>AQ quintile (1 = high AQ score; 5 low AQ score)</th>
<th>Q5–Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CostDebt</td>
<td>Q1 8.98 Q2 9.49 Q3 9.71 Q4 10.08 Q5 10.77</td>
<td>1.79 10.10</td>
</tr>
<tr>
<td>IndEP</td>
<td>Q1 0.0048 Q2 0.0032 Q3 0.0076 Q4 0.0091 Q5 0.0140</td>
<td>0.0093 4.37</td>
</tr>
<tr>
<td>Beta</td>
<td>Q1 0.92 Q2 1.02 Q3 1.08 Q4 1.14 Q5 1.27</td>
<td>0.35 6.75</td>
</tr>
</tbody>
</table>

<p>| Panel B: Means of annual regressions of cost of debt on accruals quality, with controls<sup>b</sup> |</p>
<table>
<thead>
<tr>
<th>Indep. var.</th>
<th>Pred. sign</th>
<th>Coef.est.</th>
<th>t-stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage</td>
<td>+</td>
<td>-2.50</td>
<td>-9.76</td>
</tr>
<tr>
<td>Size</td>
<td>-</td>
<td>-0.01</td>
<td>-0.55</td>
</tr>
<tr>
<td>ROA</td>
<td>-</td>
<td>-1.65</td>
<td>-5.02</td>
</tr>
<tr>
<td>IntCov</td>
<td>-</td>
<td>-0.02</td>
<td>-5.24</td>
</tr>
<tr>
<td>σ (NIBE)</td>
<td>+</td>
<td>5.44</td>
<td>12.35</td>
</tr>
<tr>
<td>AQ</td>
<td>+</td>
<td>0.14</td>
<td>13.36</td>
</tr>
</tbody>
</table>

<p>| Panel C: Means of annual regressions of industry-adjusted EP ratio on accruals quality, with controls<sup>b</sup> |</p>
<table>
<thead>
<tr>
<th>Indep. var.</th>
<th>Pred. sign</th>
<th>Coef.est.</th>
<th>t-stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>-</td>
<td>-0.0027</td>
<td>-2.00</td>
</tr>
<tr>
<td>Beta</td>
<td>+</td>
<td>-0.0043</td>
<td>-2.74</td>
</tr>
<tr>
<td>Leverage</td>
<td>+</td>
<td>0.0097</td>
<td>2.55</td>
</tr>
<tr>
<td>Size</td>
<td>-</td>
<td>-0.0009</td>
<td>-1.67</td>
</tr>
<tr>
<td>AQ</td>
<td>+</td>
<td>0.0013</td>
<td>5.83</td>
</tr>
</tbody>
</table>

Sample description and variable definitions: see Table 1 for variable definitions. The sample used in the cost of debt tests (Panels A and B) contains 76,195 observations over 1970–2001. The sample used in the earnings-price ratio tests (Panels A and C) contains 55,092 firm-year observations over \(t = 1970–2001 \). The sample used to calculate betas consists of 8,881 firms with at least 18 monthly returns and data on AQ.

^aThe first two rows of Panel A show the mean cost of debt and mean industry-adjusted earnings-price ratio for each AQ quintile. The third row shows the portfolio beta for each AQ quintile, where Beta is calculated by regressing each quintile’s monthly excess return on the monthly excess market return, for the period April 1971–March 2002. The columns labeled “Q5–Q1” show the difference in the mean values between the worst (Q5) and best (Q1) accruals quality quintiles, along with t-statistics of whether the difference is zero.

^bPanel B (Panel C) reports the mean results of estimating annual relations between firm j’s cost of debt (industry-adjusted earnings-price ratio) and the decile rank value of AQ, controlling for other factors known to affect the cost of debt (industry-adjusted earnings-price ratio). t-statistics are based on the time-series standard errors of the 32 coefficient estimates.

if creditors view firms with low-quality accruals as riskier than firms with high-quality accruals, we expect a positive relation between costs of debt and AQ, or \(\theta_6 > 0 \), in the following regression:

\[
\text{CostDebt}_{j,t} = \theta_0 + \theta_1 \text{Leverage}_{j,t} + \theta_2 \text{Size}_{j,t} + \theta_3 \text{ROA}_{j,t} + \theta_4 \text{IntCov}_{j,t} \\
+ \theta_5 \sigma(\text{NIBE})_{j,t} + \theta_6 \text{AQ}_{j,t} + \zeta_{j,t},
\]

(2)
where $Leverage_{j,t} = \text{firm } j \text{'s ratio of interest-bearing debt to total assets in year } t$, $Size_{j,t} = \log \text{ of firm } j \text{'s total assets in year } t$, $ROA_{j,t} = \text{firm } j \text{'s return on assets in year } t$, $IntCov_{j,t} = \text{firm } j \text{'s ratio of operating income to interest expense in year } t$, $\sigma(NIBE)_{j,t} = \text{standard deviation of firm } j \text{'s net income before extraordinary items (NIBE), scaled by average assets, over the rolling prior 10-year period; we require at least five observations of NIBE to calculate the standard deviation.}$

Panel B, Table 2 reports the results of estimating Eq. (2). The first five rows show the coefficient estimates and t-statistics for the control variables. As expected, earnings volatility is significantly (at the 0.01 level or better) positively correlated with $CostDebt$, and ROA and $IntCov$ are significantly (at the 0.01 level) negatively related; for our sample, $CostDebt$ is insignificantly related to $Size$, and negatively related to $Leverage$. The results for AQ show that accruals quality is positively correlated with $CostDebt$ (t-statistic = 13.36). The mean value of the yearly θ_0's from the decile rank regressions indicates the economic importance of these effects. The average coefficient estimate of 0.14, suggests a difference of 126bp (0.14 multiplied by nine decile differences) in realized costs of debt between the worst and best AQ deciles.

In unreported tests, we also examine the association between accruals quality and ex-ante costs of debt, proxied by S&P Issuer Credit Ratings (Compustat #280). The sample size for these tests is smaller ($n = 13,032$ firm-year observations) both because these data are available beginning in 1985 and because they are not reported for many firms. Consistent with the results for the realized cost of debt, we find that AQ adds meaningfully to explaining debt ratings, incremental to control variables. Specifically, the mean decile rank coefficient estimate on AQ of 0.27 (t-statistic = 12.64) suggests a difference in debt ratings of 2.43 for firms in the best and worst AQ deciles. Given that the mean debt rating for firms in the best AQ decile is roughly A, a 2.4 category difference corresponds to a BBB rating for the worst AQ firms.

In summary, the above findings indicate that accruals quality affects the cost of debt, incremental to financial leverage, size, return on assets, interest coverage and earnings volatility. The results are consistent across both ex post and ex ante measures of the cost of debt. The realized cost of debt regressions suggest a 126bp differential between the best and worst accruals quality firms.

5 Prior research using either debt ratings or the yield on new bond issues to proxy for the cost of debt capital (e.g., Ziebart and Reiter, 1992; Sengupta, 1998) generally finds a positive relation between leverage and the cost of debt. Our results (untabulated) that use S&P debt ratings as the proxy for the cost of debt also yield a significantly (at the 0.001 level) positive coefficient on leverage. Research on the relation between realized costs of debt and leverage includes Pittman and Fortin (2004), who argue that realized debt cost is a noisy proxy for the underlying construct, and therefore truncate at the 5th and 95th percentiles. When we similarly truncate, we find a significantly (at the 0.001 level) positive coefficient on leverage.

6 We recode the Compustat data to remove unassigned and similar codes. Our recoded variable, $DebtRating$, ranges from 1 (AAA) to 20 (Default).
4.2. Earnings–price ratios

Following Liu et al. (2002), we view the price multiple attached to earnings as a short-hand valuation, Dechow and Dichev (2002) which places a price on a dollar of earnings. A higher multiple implies a lower cost of capital—investors are willing to pay more for a given dollar of earnings. Viewing the price–earnings ratio as an inverse indicator of the cost of equity, we assess whether lower-accruals quality results in lower price–earnings ratios (Penman, 2001). Specifically, we investigate the relation between AQ and industry-adjusted earnings–price ratios. We use earnings–price ratios to address concerns with the effects of small values of earnings in the denominator, and we industry-adjust based on Alford’s (1992) finding that industry membership works well for selecting firms that are comparable in terms of risk and growth.

To calculate industry-adjusted EP ratios, we first calculate the median EP ratio for all firms with positive earnings in year t in each of the 48 Fama-French industry groups; we require a minimum of five positive earnings firms in the industry in year t (excluding firm j). We calculate firm j’s industry-adjusted EP ratio, $IndEP$, as the difference between its EP ratio and the median industry EP ratio in year t. (We draw similar inferences using the ratio of firm j’s EP to the median industry EP.) If investors apply lower multiples to lower-quality accruals, we expect the earnings associated with such accruals to have larger $IndEP$ values. Evidence on the relation between $IndEP$ and AQ is provided in Panel A, Table 2, where we report the mean value of $IndEP$ for each quintile of the ranked AQ distribution. These data show that the poorest accruals quality firms have the largest $IndEP$, that the increase in $IndEP$ is near-monotonic across AQ quintiles, and that the mean $IndEP$ for the worst accruals quality quintile (Q5) is significantly larger than the mean for the best accruals quality quintile (Q1). The difference in mean values between Q5 and Q1 is 0.0093 and is reliably different from zero (t-statistic = 4.37). To provide a more intuitive sense of the economic magnitude of this effect, we also calculated the difference in unadjusted price–earnings ratios between the worst and best AQ quintiles (tests not reported): the mean difference is about 12 (t-statistic = 7.96). Given that the average EPS of our sample is $1.67, this difference in price–earnings ratios corresponds to about $20 per share of market value.

More formal tests of whether accruals quality explains industry-adjusted EP ratios are shown in Panel C, Table 2, where we report the coefficient estimates and t-statistics from estimating Eq. (3), which includes controls for growth, leverage, beta and firm size:

\[
IndEP_{j,t} = \beta_0 + \beta_1 Growth_{j,t} + \beta_2 Leverage_{j,t} + \beta_3 Beta_{j,t} + \beta_4 Size_{j,t} + \\
\beta_5 AQ_{j,t} + \epsilon_{j,t},
\]

(3)

where $Growth$ is the log of one plus the firm’s growth in book value of equity over the past 5 years, $Beta$ the 5-year rolling pre-estimated beta obtained from firm-specific CAPM estimations using the past 5 years of data; we require a firm to have at least 18 monthly returns for this estimation.
Results show that IndEP is negatively related to Growth (t-statistic = −2.00), consistent with higher-growth firms having smaller earnings–price ratios. We also expect that riskier firms have larger earnings–price ratios; this positive association is observed for Leverage (t-statistic = 2.55) but not for Beta, where we find a reliably negative association.\(^7\) To the extent that smaller firms are more risky than larger firms, our finding of a negative association between IndEP and Size (t-statistic = −1.67) is also consistent with view that riskier firms have larger earnings–price ratios. The last row of Panel C shows that firms with larger AQ scores have larger earnings–price ratios, controlling for other factors affecting earnings–price ratios: the mean estimate of \(\varphi_3\) is positive, with a t-statistic of 5.83. We interpret this result as indicating that as the quality of accruals decreases, so too does the amount investors are willing to pay for a dollar of earnings, implying a higher cost of equity capital for firms with lower-quality accruals.

4.3. Factor loadings in one-factor and three-factor asset-pricing models

Our next analysis investigates the effects of accruals quality on the equity cost of capital, as manifest in the factor loadings and explanatory power of one-factor and three-factor asset-pricing models. Whereas the EP ratio analysis in the prior section captures investors’ ex-ante assessment of the cost of equity, the asset-pricing regressions in this section use average (ex-post) returns realizations to proxy for the cost of equity. We begin by examining whether poorer accruals quality is associated with a larger factor loading on systematic risk (beta) in a traditional one-factor model. If accruals quality is associated with this risk, we expect a positive association between AQ and beta.

To allow for differences in firms’ fiscal year ends as well as over-time changes in accruals quality, we use a dynamic portfolio technique to assign firms to AQ quintiles. Specifically, beginning in April 1971, we form quintiles on the first day of each calendar month \(m\) based on the firm’s most recent value of AQ known prior to month \(m\); firms with the smallest (largest) AQ values are placed in the first (fifth) quintile.\(^8\) We calculate the average monthly excess return for each quintile for the period April 1971–March 2002, yielding a time series of 384 monthly excess returns for each of the quintiles (\(q = Q1, \ldots, Q5\)). The portfolio beta is the coefficient obtained from regressing each quintile’s monthly excess return on the monthly excess market return:

\[
R_{q,m} - R_{F,m} = \alpha_q + \beta_q (R_{M,m} - R_{F,m}) + \epsilon_{q,m}. \tag{4}
\]

\(^7\) Based on Fama and French’s (1992) reported high correlations between pre-estimated betas, size and leverage, we conjecture that this negative association is due to a correlation between beta and either or both size and leverage.

\(^8\) For example, for the month of April 1998 firms are ranked into quintiles based on the AQ signals calculated using annual data for fiscal year-ends between January 1997 and December 1997. This procedure means that firm \(j\)’s AQ signals for year \(t\), where fiscal year \(t\) ends in month \(n\), will influence firm \(j\)’s ranking for months \(n + 4\) through \(n + 15\).
Panel A, Table 2 reports the betas obtained from estimating Eq. (4) for each quintile. These data show that estimated betas increase monotonically across the quintiles, from 0.92 for Q1 to 1.27 for Q5. The differences in betas between the Q5 and Q1 portfolios is 0.35 (t-statistic = 6.75). Assuming a 6% market risk premium, the Q5–Q1 difference in betas of 0.35 implies that firms with the highest quality accruals enjoy a 210 bp reduction in the cost of equity capital relative to firms with the worst quality accruals.

More explicit tests of the effects of accruals quality on the cost of equity capital are conducted using firm-specific asset-pricing regressions. We begin by estimating one-factor models for each of the $J = 8,881$ firms with data on AQ and at least 18 monthly returns between April 1971 and March 2002. The mean (median) sample firm has 159 (130) monthly returns. Panel A, Table 3 reports the mean values of the coefficients and adjusted R^2's from these CAPM tests, and reports t-statistics of whether the mean estimate equals zero. The results show a mean beta of 1.04 (t-statistic of 174.57) and a mean adjusted R^2 of 13.5%. To the traditional CAPM, we add a variable capturing accruals quality. Specifically, we calculate an AQ factor-mimicking portfolio equal to the difference between the monthly excess returns of the top two AQ quintiles (Q4 and Q5) and the bottom two AQ quintiles (Q1 and Q2). This procedure (similar to that used by Fama and French (1993) to construct size and book-to-market factor-mimicking portfolios) yields a series of 384 monthly AQ factor returns. Panel A shows the results of regressions which include AQ factor as an additional independent variable; these tests allow us to assess the degree to which accruals quality overlaps with and adds to the market risk premium in explaining returns. Specifically, we report the mean of the $J = 8,881$ loadings, β_j and λ_j, from firm-specific estimations of Eq. (5):

$$R_{j,m} - R_{F,m} = \alpha_j + \beta_j(R_{M,m} - R_{F,m}) + \lambda_j AQ_{factor,m} + e_{j,m}. \ (5)$$

The mean loading on AQ factor is positive and highly statistically significant, with a t-statistic of 83.48. The mean estimated beta remains statistically positive ($\hat{\beta} = 0.83$, t-statistic = 146.19) in the presence of AQ factor, but its magnitude is reduced by 20% relative to the point estimate of 1.04 from the regression excluding AQ factor. While this result suggests that some of the information in AQ factor overlaps with the market risk premium, the statistical significance of both variables indicates that neither beta nor accruals quality subsumes the other. Evidence on the extent to which AQ factor adds to explaining returns is provided in the last row of Panel A, where we report the incremental explanatory power of the AQ factor, equal to the average difference in adjusted R^2's from estimations of Eq. (5) versus Eq. (4). These results show that AQ factor increases the average adjusted R^2 by 4.3% from a mean of 13.5% to a mean of 17.8%, or by about 32%.

We also investigate the ability of AQ factor to explain returns by examining its contribution to the three-factor asset-pricing model. This analysis provides evidence on whether AQ factor proxies for either or both the size factor (SMB) or the book-to-market factor (HML), both of which have been shown to be incrementally relevant for asset pricing (Fama and French, 1993). We begin by estimating the three-factor
model for each of the \(J = 8,881 \) firms:

\[
R_{j,m} - R_{F,m} = a_j + b_j(R_{M,m} - R_{F,m}) + s_j SMB_m + h_j HML_m + \varepsilon_{j,m}. \tag{6}
\]

Panel A reports the mean coefficient estimates and t-statistics for the three-factor pricing regressions. These results show that each of the factor loadings is highly significant, with t-statistics of 164.71 (\(b \)), 106.35 (\(s \)) and 23.53 (\(h \)). Together, the three factors explain an average of 18.9% of the total variation in the sample firms’ excess returns. The remaining columns of Panel A report the mean coefficient estimates and t-statistics for regressions which include \(AQ \) factor:

\[
R_{j,m} - R_{F,m} = a_j + b_j(R_{M,m} - R_{F,m}) + s_j SMB_m + h_j HML_m + \varepsilon_{j,m} + \varepsilon_j AQ_{factor} + \varepsilon_{j,m}. \tag{7}
\]

The results show a mean estimate of \(\varepsilon > 0 \), with a t-statistic of 44.72. Inspection of the incremental \(R^2 \)’s and the changes in the estimates of \(b \), \(s \) and \(h \), indicate that the significance of \(AQ \) factor comes both from additional explanatory power (the average adjusted \(R^2 \) increases from a mean of 18.9% to a mean of 20.8%) and from overlap.
with the other three factors. By far, the most significant overlap of AQfactor is with SMB, where the inclusion of AQfactor causes the average factor loading on SMB to decline by 29%, from 0.90 to 0.64. The significant impact of AQfactor on SMB is consistent with Berk’s (1995) conclusion that size factor loadings reflect misspecification and estimation errors of the asset-pricing model. In particular, if the three-factor model is misspecified due to the exclusion of AQfactor, we would expect its inclusion to reduce the magnitude of the loading on SMB. Separately, Fama and French (1997) and Knez and Ready (1997) comment on the instability of the size premium itself.

The results in Table 3 suggest that accruals quality plays a statistically and economically meaningful role in determining the cost of equity capital. To mitigate concerns that these findings are specific to the sample of firms used to calculate AQfactor, we repeat the one-factor and three-factor tests using the 20,878 publicly traded firms with at least 18 monthly returns during the period April 1971 through March 2002. If firms with poor accruals quality have higher costs of capital, their excess returns should exhibit positive loadings on AQfactor. The results of these tests, reported in Panel B, Table 3, are, if anything, stronger than those reported in Panel A of this table. In particular, the CAPM tests show significant positive loadings on AQfactor (t-statistic = 100.51), with AQfactor contributing a mean incremental explanatory power of 4.1%, an increase of about 34% from the regression excluding AQfactor. The three-factor results show that AQfactor retains statistical significance in the presence of the other three factors (t-statistic = 53.02), and provides average incremental explanatory power of 2.1%, an increase of about 12% over the model excluding AQfactor. In addition, the factor loading on SMB decreases by 31% (from 0.83 to an average of 0.58) when AQfactor is included.

We interpret the results in Tables 2 and 3 as showing that accruals quality affects market perceptions of equity risk. The result that firms with poor quality accruals have larger costs of equity capital than firms with high-quality accruals is consistent both with intuition and with predictions from Easley and O’Hara (2004), O’Hara (2003) and Leuz and Verrecchia (2004). Furthermore, the loadings on the other variables change, sometimes substantially, when the accruals quality factor is added to the asset-pricing model. Such coefficient changes indicate that an asset-pricing model without an information quality factor is not fully specified (inducing misspecification bias on the coefficients); in particular, mere correlation between AQfactor and the other factors would not substantially change coefficient estimates.

5. The pricing of innate versus discretionary accruals quality

The results in Tables 2 and 3 demonstrate that total accruals quality is priced by the market. In this section we test Hypothesis 2, which considers differential pricing

9This analysis is facilitated by the factor mimicking portfolio design which maps firm- and year-specific accruals quality values into month-specific excess returns, AQfactor. Because AQfactor is not firm-specific, it can be correlated with the excess returns of any firm, irrespective of whether the firm has data to calculate AQ.
effects for the innate versus discretionary components of accruals quality. Our tests use the two approaches described in Section 2.3.2 to distinguish the innate and discretionary components of accruals quality.

5.1. Separating accruals quality into innate and discretionary components (Method 1)

DD identify five innate factors as affecting accruals quality: firm size ($Size$, measured as the log of total assets; our results are not sensitive to other measures of size, such as revenues), standard deviation of cash flow from operations ($\sigma(CFO)$), standard deviation of sales revenues ($\sigma(Sales)$), length of operating cycle ($OperCycle$, measured as the sum of days accounts receivable and days inventory) and incidence of negative earnings realizations ($NegEarn$). Following DD, we expect smaller firms, and firms with greater cash flow volatility, longer operating cycles, and a greater incidence of losses, to have poorer accruals quality. We measure each of these summary indicators on a firm-specific basis, using rolling 10-year windows (we require at least five observations in each window); results are not sensitive to the length of the window used to measure the innate factors. Descriptive statistics about the innate factors are reported in Table 1. The values of the indicators for our sample (1970–2001) are similar to those reported by DD for their sample (1987–1999). For example, our sample mean values are 4.80 for $Size$, 0.094 for $s(CFO)$; 0.257 for $s(Sales)$; 182 days for $OperCycle$; and 19.3% for $NegEarn$; in comparison, Dechow and Dichev report mean values of 5.50 for $Size$, 0.060 for $s(CFO)$, 0.215 for $s(Sales)$, 141 days for $OperCycle$, and 10% for $NegEarn$.

Our first approach to identifying the components of accruals quality (Method 1) relies on annual estimations of Eq. (8):

$$AQ_{j,t} = \hat{\lambda}_0 + \hat{\lambda}_1 Size_{j,t} + \hat{\lambda}_2 \sigma(CFO)_{j,t} + \hat{\lambda}_3 \sigma(Sales)_{j,t} + \hat{\lambda}_4 OperCycle_{j,t} + \hat{\lambda}_5 NegEarn_{j,t} + \mu_{j,t},$$

where $\sigma(CFO)_{j,t}$ is the standard deviation of firm j’s CFO, calculated over the past 10 years, $\sigma(Sales)_{j,t}$ the standard deviation of firm j’s sales, calculated over the past 10 years, $OperCycle_{j,t}$ the log of firm j’s operating cycle, $NegEarn_{j,t}$ the number of years, out of the past 10, where firm j reported NIBE < 0.

The predicted values from (8) yield an estimate of the innate portion of firm j’s accrual quality in year t,

$$InnateAQ_{j,t} = \hat{\lambda}_0 + \hat{\lambda}_1 Size_{j,t} + \hat{\lambda}_2 \sigma(CFO)_{j,t} + \hat{\lambda}_3 \sigma(Sales)_{j,t} + \hat{\lambda}_4 OperCycle_{j,t} + \hat{\lambda}_5 NegEarn_{j,t}.$$

The residual from (8) is the estimate of the discretionary component of firm j’s accrual quality, $DiscAQ_{j,t} = \hat{\mu}_{j,t}$.

Table 4, panel A reports the mean coefficient estimates from the annual regressions of Eq. (8). The reported t-statistics are based on the time-series standard errors of the 32 coefficient estimates. In all cases, we find the expected signs on the summary indicators of innate factors (i.e., all indicators but $Size$ are positively related to accruals quality; $Size$ is negatively related), and all indicators are
individually significant in explaining accruals quality (with t-statistics, in absolute value, ranging from 12.38 to 24.38). The explanatory power of the summary indicators of innate factors averages 45% across the yearly estimations.

Using the parameter estimates obtained from the annual regressions of (8), we calculate *InnateAQ* and *DiscAQ* derived using Method 1. Unreported results show that the mean (median) value of the innate component is 0.044 (0.037), compared to

Table 4

Panel A: Mean results of annual regressions of *AQ* on innate factors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>–</td>
<td>−0.0022</td>
<td>−14.18</td>
</tr>
<tr>
<td>σ (CFO)</td>
<td>+</td>
<td>0.1888</td>
<td>24.38</td>
</tr>
<tr>
<td>σ (Sales)</td>
<td>+</td>
<td>0.0250</td>
<td>12.38</td>
</tr>
<tr>
<td>log(OperCycle)</td>
<td>+</td>
<td>0.0035</td>
<td>12.47</td>
</tr>
<tr>
<td>NegEarn</td>
<td>+</td>
<td>0.0335</td>
<td>17.96</td>
</tr>
<tr>
<td>Adj. R²</td>
<td></td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Mean results of annual regressions of cost of debt on accruals quality, with controls

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage</td>
<td></td>
<td>2.50</td>
<td>9.76</td>
<td>−2.64</td>
<td>−9.83</td>
</tr>
<tr>
<td>Size</td>
<td>–</td>
<td>−0.01</td>
<td>−0.55</td>
<td>0.11</td>
<td>4.15</td>
</tr>
<tr>
<td>ROA</td>
<td>–</td>
<td>−1.65</td>
<td>−5.02</td>
<td>−1.73</td>
<td>−5.34</td>
</tr>
<tr>
<td>IntCov</td>
<td>–</td>
<td>−0.02</td>
<td>−5.24</td>
<td>−0.02</td>
<td>−5.06</td>
</tr>
<tr>
<td>AQ</td>
<td>+</td>
<td>5.44</td>
<td>12.35</td>
<td>1.10</td>
<td>1.62</td>
</tr>
</tbody>
</table>

Panel C: Mean results of annual regressions of industry-adjusted EP ratios on accruals quality, with controls

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>–</td>
<td>−0.0027</td>
<td>−2.00</td>
<td>−0.0032</td>
<td>−2.26</td>
</tr>
<tr>
<td>Beta</td>
<td>+</td>
<td>−0.0043</td>
<td>−2.74</td>
<td>−0.0056</td>
<td>−3.85</td>
</tr>
<tr>
<td>Leverage</td>
<td>+</td>
<td>0.0097</td>
<td>2.55</td>
<td>0.0077</td>
<td>2.06</td>
</tr>
<tr>
<td>Size</td>
<td>–</td>
<td>−0.0009</td>
<td>−1.67</td>
<td>0.0005</td>
<td>0.86</td>
</tr>
<tr>
<td>AQ</td>
<td>+</td>
<td>0.0013</td>
<td>5.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method 1 Innate + — — 0.0021 6.97 — —
Method 1 Disc + — — 0.0005 3.00 — —
Method 2 Disc + — — 0.0008 4.77
a zero mean (-0.003 median) value for the discretionary component. The zero mean value of DiscAQ is expected, given that the discretionary component is defined as the prediction error from (8). Because AQ is linear in accrual quality (with larger values of AQ indicating poorer quality accruals), DiscAQ and InnateAQ are also linear in accruals quality. Hence, the negative median value of DiscAQ indicates that for the median firm, the discretionary component of accruals quality increases accruals quality. In unreported tests, we find that DiscAQ is negative for 58% of the observations; this percentage is reliably different from chance (50%) at the 0.001 level. On the whole, we believe these data are consistent both with Guay et al. (1996) view and Subramanyam’s (1996) evidence—that the expected net effect of discretion over accruals quality in broad samples that approximate the population will be to improve earnings as a performance measure—and with Healy’s (1996) comment that panel data are likely to be heterogeneous with respect to how managers exercise their discretion over accruals.

As a validity test of Method 1’s decomposition of total accruals quality into InnateAQ and DiscAQ, we investigate over time changes in each of these

<table>
<thead>
<tr>
<th>Panel D: Mean results of firm-specific cost-of-capital regressions, 3-factor model ($n = 20,878$ firms)(^{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{M} - R_{F}$</td>
</tr>
<tr>
<td>SMB</td>
</tr>
<tr>
<td>HML</td>
</tr>
<tr>
<td>$AQfactor$</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Method 1</td>
</tr>
<tr>
<td>Innate</td>
</tr>
<tr>
<td>Disc</td>
</tr>
<tr>
<td>Method 2</td>
</tr>
<tr>
<td>Disc</td>
</tr>
</tbody>
</table>

Sample definition and variable definitions: Under Method 1, InnateAQ is the predicted value obtained from the annual parameter estimates and firm’s reported values of the innate factors; DiscAQ is the residual. Under Method 2, DiscAQ is the coefficient on (total) AQ, including the innate factors as control variables. See Table 1 for other definitions.

\(^{d}\)Panel A reports the mean values of the 32 annual coefficient estimates obtained from regressions of AQ on the innate factors. t-statistics are based on the standard errors of the 32 coefficient estimates.

\(^{d}\)Panel B reports the mean results of estimating annual relations between firm’s cost of debt and the decile rank value of AQ, controlling for other factors known to affect the cost of debt. The columns labeled “Total” show the results including (total) AQ in the regressions; these results are identical to those shown in Tables 2 and 3. The columns labeled “Method 1” show results where we substitute the estimates of the innate and discretionary components of accruals quality (InnateAQ and DiscAQ) for AQ in the cost of debt regression. The columns labeled “Method 2” show results where we include the innate factors in the cost of debt regression.

\(^{d}\)Panel C reports similar information as Panel B, except that the focus is on the cost of equity, as proxied by industry-adjusted earnings-price ratios.

\(^{d}\)Panel D reports similar information as Panel B, except that the focus is on the cost of equity, as captured by factor loadings on $AQfactor$ in regressions of realized returns on the market risk premium, SMB, HML and $AQfactor$. The sample used in Panel D consists of 20,878 firms with at least 18 monthly stock returns between April 1971 and March 2002.
components. We expect that firms with poor accruals quality that is driven by innate features of the business environment would find it more difficult to improve their situation than would firms where poor quality is driven by discretionary sources. We test this conjecture by examining the percentage year-to-year absolute change in InnateAQ and DiscAQ, holding the firm constant. Using a paired-sample test of these changes, we find that the average change in DiscAQ is significantly (at the 0.001 level) larger than the average change in InnateAQ. Specifically, the average change is 160 percentage points larger for discretionary than for innate (t-statistic $= 105$). These results are insensitive to whether we use raw rather than percentage change values (t-statistic is 151 for raw values). Overall, we view these results as supportive of Method 1’s identification of the innate–discretionary partition.

5.2. Cost of capital effects of innate and discretionary accruals quality

Our first approach to distinguishing between the cost of capital effects of innate and discretionary accruals quality substitutes InnateAQ and DiscAQ for AQ in the original cost of capital regressions. Our second approach adds the summary indicators of innate factors as right-hand side variables to the original cost of capital regressions. In both approaches, and for each cost of capital test, we continue to control for variables found by prior research to be associated with the cost of capital. Table 4 reports the results of estimating the main regression tests for the cost of debt (Panel B), industry-adjusted earnings–price ratios (Panel C), and firm-specific, three-factor, asset-pricing regressions for all listed firms (Panel D). For brevity, we do not tabulate the coefficient estimates on the summary indicators of innate factors under the second approach.

Turning first to the cost of debt tests, Panel B shows that under Method 2, the discretionary component of accruals quality has a significant pricing effect. Specifically, the decile rank regressions show a mean coefficient estimate on AQ of 0.08 (t-statistic $= 9.93$). This result suggests that firms with the best discretionary accruals quality enjoy 72bp lower costs of debt than firms with the worst discretionary accruals quality. Comparing these results with those for the total accruals quality metrics (reported in the columns labeled ‘Total’; these are identical to the results in Panel B, Table 2) shows that the cost of debt effects of discretionary accruals quality are about one-half of the total effects documented previously (0.08 versus 0.14). Since total AQ reflects both innate and discretionary effects, we interpret these results as not consistent with the null hypothesis of no difference in the pricing effects of innate versus discretionary accruals quality; rather, the results indicate that discretionary accruals quality has a weaker pricing effect than innate accruals quality.

The cost of debt effects of discretionary accruals quality is both smaller in magnitude and weaker in statistical significance under Method 1, which explicitly

\footnotetext{To maintain notational consistency with how we describe AQ in the rest of the paper, we continue to use the naming convention ‘best’ (worst) to describe the lowest (highest) values of AQ when discussing discretionary AQ. This does not indicate any priors on our part. As discussed previously, to the extent the performance subcomponent of discretionary accruals dominates, higher values of discretionary accruals can be associated with lower information asymmetry.}
separates the innate component of accruals quality and therefore allows for direct comparisons. The mean coefficient estimate on InnateAQ is over six times as large as the mean coefficient on DiscAQ (i.e., 0.26 versus 0.04). Both are reliably different from zero (the t-statistic of InnateAQ is 13.11 and the t-statistic for DiscAQ is 6.92). Economically, the effect of innate accruals quality is to increase the cost of debt by about 234 bp between the highest and lowest innate accruals quality firms, while the effect of discretionary accruals quality is about 36 bp. The difference between innate versus discretionary pricing effects is significant at the 0.001 level (tests not reported). These results indicate that investors attach a higher cost of debt to firms with poor accruals quality that is attributable to innate factors, relative to the cost of debt effects of discretionary accruals quality.

Tests based on industry-adjusted earnings–price ratios as the measure of cost of equity capital (Panel C) lead to similar inferences. Under Method 2, discretionary accruals quality has a positive coefficient that is smaller and less significant (estimate is 0.0008, with a t-statistic = 4.77) than is the coefficient on total accruals quality (estimate is 0.0013, t-statistic = 5.83). When both innate and discretionary components are included (Method 1), the coefficient on the innate component exceeds the coefficient on the discretionary component by a factor of four (0.0021 versus 0.0005, difference (not reported) significant at the 0.001 level). The t-statistic for the mean coefficient on the innate component equals 6.97, while the mean coefficient on the discretionary component exhibits weaker statistical significance (t-statistic = 3.00). Similar to the results in Panel B, the Panel C results reject the null hypothesis of no difference between the costs of capital effects of innate versus discretionary accruals quality, in favor of the view that the innate component of accruals quality is accorded a higher risk premium than is the discretionary component.

Results of firm-specific asset-pricing regressions are reported in Panel D. For Method 2, we construct factor-mimicking portfolios for each innate factor, which we add to Eq. (7) as additional independent variables. For Method 1, we construct factor-mimicking portfolios for InnateAQ and DiscAQ, which we substitute for AQfactor in Eq. (7). We estimate these augmented equations for the 20,878 firms with at least 18 monthly returns. We obtain similar results (not reported) if we restrict the analysis to 8,881 firms with data on the AQ variables, or if we use the CAPM as the base model. Both methods of distinguishing DiscAQ produce reliably (at the 0.001 level) positive loadings on the accrual quality factors: under Method 1, the coefficient estimate on innate AQfactor is 0.23 (t-statistic = 52.20) and the coefficient estimate on discretionary AQfactor is 0.10 (t-statistic = 8.94); under Method 2, the discretionary component has a mean factor loading of 0.09 (t-statistic = 3.98). For both methods, the coefficient on discretionary AQfactor is reliably smaller (at the 0.001 level, not reported) than the respective coefficient estimate on total AQfactor or on innate AQfactor. Although it is not straightforward to interpret differences in factor loadings on the innate and discretionary components under Method 1 (because the factor itself changes), we observe that the loading on discretionary AQ is about one-half the loading on innate AQ; this difference is significant at the 0.001 level (not reported).
5.3. Summary

We draw the following inferences from the results in Table 4. First, we find that summary indicators (size, standard deviation of cash flows, standard deviation of sales revenues, operating cycle, and frequency of negative earnings) of innate operating and environmental factors explain a significant portion of accruals quality. This result indicates that a material portion of total accruals quality reflects economic fundamentals—business models and operating environments—as would be expected if accruals are performing their intended role of capturing economic substance. Second, innate accruals quality has a larger pricing effect than does discretionary quality (which is attributable to accounting policy choice, implementation decisions, and estimation errors). This result indicates that investors are not indifferent to the source of information risk; rather, they accord greater weight (in the determination of costs of capital) to accruals that reflect intrinsic features of the firm’s business model, relative to accruals that reflect a combination of pure noise and opportunistic choices (which increase information risk) and management’s attempts to make earnings more informative (which decrease information risk).

Third, we find that a larger-than-chance fraction (about 58%) of our sample has negative values of our discretionary accruals measures. This pattern is an additional indicator that accruals are performing as intended, consistent with Guay, Kothari and Watts’ view that, although discretionary accruals by definition will contain the effects of errors and opportunistic choices, in broad samples over long time periods, managers will tend to use accruals to improve earnings as a performance signal. Finally, we find significantly smaller pricing effects of discretionary accruals, relative to innate accruals; we attribute this difference in pricing effects to the presence of noise and opportunistic reporting choices. This result is expected and also desirable from the perspective of capital allocation, because rational investors who are aware of the discretionary and innate components of accruals will appropriately accord less weight to the former in their determinations of the cost of capital.

6. Additional tests

In this section, we summarize the results of several sensitivity tests (Section 6.1), and we describe two supplemental tests. The first supplemental test investigates whether changes in accruals quality are predictably associated with changes in the proxies for costs of capital (Section 6.2); the second examines the relation between our findings and the accruals anomaly (Section 6.3).

6.1. Sensitivity tests

We examine the sensitivity of our results to several methodological choices or concerns: estimation procedures, variable specification, skewness, and alternative proxies for accruals quality. With respect to estimation procedure, we repeat our tests using pooled time-series, cross-sectional regressions. For these tests, we control
for heteroscedasticity and autocorrelation by assessing statistical inference using Newey-West (1987) standard errors. The pooled results (not reported) are similar in all respects to the annual results. With respect to variable specification, we repeat our tests replacing the decile rank values of AQ with the raw values of this variable. Results for the raw regressions (not reported) are similar in all respects to those reported. With respect to skewness, we investigate whether the results are robust to the exclusion of firms in the worst accruals quality quintile. Although the magnitudes of the cost of capital effects are smaller when we exclude observations in Q5 (not reported), all results and differences remain statistically significant. Finally, with respect to alternative proxies, we repeat our tests using four other proxies for accruals quality (the calculations of these proxies are detailed in the Appendix). While the results for proxies based on the absolute value of abnormal accruals generally show smaller cost of capital effects than do proxies based on the standard deviation of residuals from Dechow–Dichev regressions (not reported), all results and differences are statistically significant.

6.2. Changes in accruals quality and changes in costs of capital

To augment the cross-sectional tests of total accruals quality detailed in Section 4, we investigate whether the change in a firm’s accruals quality is positively correlated with the change in its costs of capital. While this test controls for firm-specific factors that are constant over time, it has lower power (relative to the cross-sectional levels tests) because of the over-time variation in AQ. We first divide the sample period into six intervals, $T = 1, 2, \ldots, 6$, corresponding to the following subperiods: 1970–75, 1976–80, 1981–85, 1986–90, 1991–95, and 1996–2001. For each subperiod, we calculate firm j’s mean value of AQ (we require at least three observations to calculate the mean; results are not sensitive to this choice). We then take the difference in firm j’s mean value of AQ between T and $T - 2$; we exclude $T - 1$ from the comparison to avoid overlap with the interval used to calculate AQ. We also calculate the mean change in each of firm j’s cost of capital proxies between T and $T - 2$: $\Delta CostDebt_j$, $\Delta IndEP_j$ and $\Delta Beta_j$. Because these tests require data for both period T and period $T - 2$, the number of observations is smaller than in the previous tests: $\Delta CostDebt_j (n = 3, 193)$, $\Delta IndEP_j (n = 2, 920)$ and $\Delta Beta_j (n = 3, 698)$.

Our tests regress the change in each cost of capital measure on the change in AQ. The results (not reported) show significant positive correlations for all cost of capital measures: t-statistics are 2.33 for $\Delta Beta_j$, 4.35 for $\Delta IndEP_j$, and 5.65 for $\Delta CostDebt_j$. We conclude from these results that the cross-sectional finding—that accruals quality is priced by the market—is robust to an alternative research design which holds the firm constant and correlates over-time changes in accruals quality with contemporaneous changes in costs of capital.

6.3. Comparison with Sloan (1996)

Our final analysis of the pricing of total accruals quality explores the relation between our findings and those documented in Sloan (1996) concerning the accruals
anomaly. Our beta regressions (Table 2, panel A) are similar in appearance to some of the accruals anomaly tests in Sloan (1996, Table 6). Specifically, we sort firms into quintiles based on accruals quality and regress quintile returns on excess market returns; Sloan sorts firms into deciles based on signed total accruals and regresses signed-accrual decile returns on excess market returns. However, we believe that Sloan’s tests and ours are substantively unrelated. First, Sloan’s interest is in the regression intercept (Jensen’s alpha), a measure of the unexpected return. In contrast, our interest is in the slope coefficient (beta), a measure of the expected return, i.e., the cost of capital. Second, the accrual quality effects we document are predicated on over-time variability of accrual mappings into cash flows, or, in the sensitivity checks reported in Section 6.1, on absolute abnormal accruals. Neither of these constructs maps directly into the signed accruals or signed abnormal accruals which are the basis for accruals anomaly. Further, even if such a mapping existed, our asset-pricing results are robust to controls for size and book-to-market factors, which Fama and French (1996) show capture value-glamour strategies, such as cash flow-to-price, which in turn has been shown by Desai et al. (2004) to capture most or all of the accruals anomaly.

To test whether our results are empirically related to Sloan’s results, we perform portfolio tests similar to his. Specifically, we go long in the top decile of total accruals and short in the bottom total accruals decile. We then test to see whether the intercept (the measure of the accruals anomaly) of this total accruals ‘hedge’ portfolio is eliminated when we add AQ_{factor} to the model of expected return (similar to Eq. (7), except the dependent variable is the return to the accruals hedge portfolio). The results (not reported) show that the intercept is only marginally affected. We conclude that our results are largely unrelated to the accruals anomaly.

7. Conclusions

We find that investors price securities in a manner that reflects their awareness of accruals quality: lower-quality accruals are associated with higher costs of debt, smaller price multiples on earnings, and larger equity betas. Moreover, accruals quality loads as a separate factor in explaining variation in excess returns when added to both one- and three-factor asset-pricing regressions. Our results are consistent across securities (debt and common equity), estimation procedures (pooled regressions and annual regressions), variable specification (raw and decile), research design (cross-sectional levels versus over-time changes), and proxies for accruals quality (standard deviation of residuals from Dechow–Dichev type models and absolute values of abnormal accruals), and are robust to the inclusion of control variables known to affect costs of capital.

We also assess the separate costs of capital effects of the innate and discretionary components of accruals quality. Using two distinct approaches to isolate the discretionary portion of accruals quality, we reject the hypothesis that discretionary accruals quality and innate accruals quality have indistinguishable costs of capital effects, in favor of the view that the discretionary component of accruals quality, on
average, has a significantly smaller pricing effect than the innate component of accruals quality. The latter result, when interpreted in the context of our broad samples, is consistent with heterogeneity among firms with respect to discretionary accruals (Guay et al., 1996; Subramanyam, 1996). While many managers use discretionary accruals to improve the reporting of the underlying economics (decreasing information uncertainty), previous research on earnings management has also documented how managers, in some time periods, make accounting choices and implementation decisions that reduce accruals quality (increasing information uncertainty). We do not attempt to segment our sample along lines that would allow us to explore the firm- and time-specific operation of specific incentives to engage in accruals-quality-decreasing behaviors. For example, managers compensated with stock options have incentives to increase volatility during the expected lives of their options, so as to increase the options’ value. Since the firm’s cost of capital can be viewed as a proxy for the volatility of returns, the existence of stock options provides an incentive for managers to take actions which increase the cost of capital, even though such increases impose costs on the firm.

Finally, our broad-sample evidence supports the view that the capital market consequences of differences in accruals quality arise because accruals quality proxies for information risk, a risk factor that cannot be diversified away in equilibrium (Easley and O’Hara, 2004; O’Hara, 2003; Leuz and Verrecchia, 2004). In contrast to other firm characteristics that have been shown by prior research to empirically predict cross-sectional differences in costs of capital, notably size and the book-to-market ratio, accruals quality maps into a theoretically grounded cost of capital determinant: information risk.

Appendix A. Alternative proxies for accruals quality

In addition to $AQ_{j,t} = \sigma(v_{j,t})$, we considered four other proxies for accruals quality, two based on the standard deviation of residuals from Dechow–Dichev regressions, and two based on measures of absolute abnormal accruals. In this Appendix, we detail our calculations of these four proxies.

The first additional proxy is the standard deviation of residuals from an (unmodified) Dechow–Dichev model estimated annually for each of Fama and French’s (1997) 48 industry groups with at least 20 firms in year t. The model regresses total current accruals in year t on lagged, current, and future cash flows from operations (this unmodified regression excludes the change in revenues and PPE as independent variables). Accruals quality is captured by the standard deviation of firm j’s annual residuals from these regressions, $v_{j,t}$, calculated over years $t - 4$ through t, $AQ_{j,t} = \sigma(v_{j,t})_{\text{Unmodified}}$.

Our second additional accruals quality metric is based on firm-specific time-series estimations of the (unmodified) Dechow–Dichev model. For each firm j and year t, we estimate the relation between current accruals and past, current and future cash flows using the most recent 12 years of data; this estimation yields 10 values of the
residual for each firm. $AQ_{j,t} = \sigma(v_{j,t})_{\text{Firm-specific}}$ is the standard deviation of the resulting 10 firm-specific residuals.

Our third additional metric is the absolute value of abnormal accruals generated by the modified Jones (1991) approach. We estimate the following cross-sectional regression for each of the Fama-French 48 industry groups with at least 20 firms in year t.

$$TA_{j,t}/\text{Asset}_{j,t-1} = \hat{\kappa}_1 + \hat{\kappa}_2 \frac{\Delta Rev_{j,t}}{\text{Asset}_{j,t-1}} + \hat{\kappa}_3 \frac{\text{PPE}_{j,t}}{\text{Asset}_{j,t-1}} + \epsilon_{j,t}. \quad (A1)$$

The industry- and year-specific parameter estimates obtained from Eq. (A1) are used to estimate firm-specific normal accruals (NA) as a percent of lagged total assets:

$$NA_{j,t} = \hat{\kappa}_1 + \hat{\kappa}_2 \frac{(\Delta Rev_{j,t} - \Delta AR_{j,t})}{\text{Asset}_{j,t-1}} + \hat{\kappa}_3 \frac{\text{PPE}_{j,t}}{\text{Asset}_{j,t-1}},$$

where $\Delta AR_{j,t}$ is firm j’s change in accounts receivable (Compustat #2) between year $t-1$ and year t, and to calculate abnormal accruals (AA) in year t. $AA_{j,t} = TA_{j,t}/\text{Asset}_{j,t-1} - NA_{j,t}$. The absolute value of the resulting measure of abnormal accruals is our third additional proxy for accruals quality, $AQ_{j,t} = |AA_{j,t}|$, with larger values of $|AA_{j,t}|$ indicating poorer accruals quality.

To obtain our fourth additional accruals quality metric, we extend the modified Jones abnormal accruals measure in two ways. First, we include the change in accounts receivable in the estimation of normal accruals:

$$TA_{j,t}/\text{Asset}_{j,t-1} = \hat{\kappa}_1^{\text{Adj}} + \hat{\kappa}_2^{\text{Adj}} \frac{(\Delta Rev_{j,t} - \Delta AR_{j,t})}{\text{Asset}_{j,t-1}} + \hat{\kappa}_3^{\text{Adj}} \frac{\text{PPE}_{j,t}}{\text{Asset}_{j,t-1}} + \epsilon_{j,t}^{\text{Adj}}. \quad (A2)$$

We include the change in accounts receivable in the estimation of normal accruals because not doing so produces abnormal accruals values which are not centered on zero when the mean ΔAR is not zero. In particular, the mean ΔAR will be positive for firms that are growing; a positive ΔAR implies that normal accruals will be understated by the modified Jones approach, leading to positive mean AA’s. The resulting measures of adjusted normal accruals and adjusted abnormal accruals are

$$NA_{j,t}^{\text{Adj}} = \hat{\kappa}_1^{\text{Adj}} + \hat{\kappa}_2^{\text{Adj}} \frac{(\Delta Rev_{j,t} - \Delta AR_{j,t})}{\text{Asset}_{j,t-1}} + \hat{\kappa}_3^{\text{Adj}} \frac{\text{PPE}_{j,t}}{\text{Asset}_{j,t-1}},$$

and

$$AA_{j,t}^{\text{Adj}} = \frac{TA_{j,t}}{\text{Asset}_{j,t-1}} - NA_{j,t}^{\text{Adj}}.$$

The second extension adjusts the resulting abnormal accruals by performance-matching (Kothari et al., 2005; McNichols, 2000). Specifically, we partition the sample firms in each industry into deciles based on the firm’s prior year return on assets (ROA) defined as net income before extraordinary items divided by beginning of year total assets. Performance-adjusted accruals are calculated as the difference
between firm j’s metric and the median metric for its industry ROA decile, where the median calculation excludes firm j. Our fourth additional measure of accruals quality is the absolute value of the resulting adjusted, performance-matched abnormal accrual, $|AA_{j,t}^{\text{Adj&PM}}|$.

References

